Connect with us

War and Military

American Stealth Fighter F-22 Vs Russian-Indian Fifth Gen PAK FA; Comparison with Latest Figures

Published

on

PAK FA T-50Russia and India dominated the sky for almost a decade with Sukhoi 30 MKI  (Modernizirovannyi Kommercheskiy Indiski / Modernized Commercial India), but the dominance was soon taken over by a new 5th generation aircraft from America. The plane can penetrate the enemy skies without being detected. This new stealth feature in the plane makes it a dominating aircraft.

To regain the air supremacy, Russia is soon going to induct its own 5th generation stealth aircraft PAK FA (Read: Russia to rule the sky once again). The development had begun long ago, in the late 1980s, when the Soviet Union outlined a need for a next-generation aircraft to replace its MiG-29 and Su-27 in front line service. PAK FA would be a single seater combat aircraft, whereas with the help of India, Russia will be making a twin seater variant too, which will use Indian origin weapons and avionics. HAL (Hindustan Aeronautics Limited) chairman told on 16th September, 2008 that the contribution of India will be mostly in composites, cockpits, avionics and arming the fighter.

On Friday 29th Jan, 2010, PAK FA performed its first test flight successfully (Read: Indo-Russian stealth fighter performed its first flight)

American F-22 is already serving the US Airforce, while Russian plane is still to be inducted. Now that both the planes are out of the paper into the real existence,  we got many requests to do a comparative research and analysis on the specification and performance of these two planes.

F-22
F-22 with drop tanks in transit to Kadena Air Base,
Japan from Langley Air Force Base, Virginia

In 1981, the U.S. Air Force developed a requirement for an Advanced Tactical Fighter (ATF), as a new air superiority fighter, to replace the F-15 Eagle and F-16 Fighting Falcon. This was influenced by the emerging worldwide threats, including development and proliferation of Soviet Su-27 “Flanker”- and MiG-29 “Fulcrum-class fighter aircraft.

While US itself is having problems in keeping and maintaining F-22 in the airforce that they had to stop further orders, it is not clear to what extent Russia and India will be able to carry this costly fighter.

US has ruled out any selling plans for F-22, instead it will consider selling only F-35 to friendly nations. PAK FA and FGFA (Indo Russian Fifth Gen Figther Aircraft) will be only used by India and Russia, though recently South Korea has shown interest in purchasing this aircraft from Russia.

Stealth technology is acquired by incorporating a combination of features to reduce visibility in the infrared, visual, audio and radio frequency spectrum. It is accomplished by using a different concept design than the conventional design which, though arises some limitations to it, gives it an advantage of intruding a hostile region without the knowledge of the enemy.

Russian approach towards stealth is slightly different; the plan is to make the aircraft invisible to radar by using a sort of plasma torch on the nose of the plane, and this torch creates ionized cloud around the plane which will absorb radar waves. (Read more: Russia to rule the sky once again).

The unit cost of Russian Aircraft is slightly more than the F-22, but Russians planes are considered to be more agile and better aerodynamically designed.

According to the interview of the Sukhoi officers, the new radar used in the PAK FA will reduce the pilot load and will use dedicated data links to share information between aircrafts.

On the other hand, the high cost of the F-22 aircraft, a lack of clear air-to-air combat missions because of delays in the Russian and Chinese fifth-generation fighter programs, a US ban on Raptor exports, and the ongoing development of the planned cheaper and more versatile F-35 resulted in calls to end F-22 production. In April 2009 the US Department of Defense proposed to cease placing new orders, subject to Congressional approval, for a final procurement tally of 187 Raptors. The National Defense Authorization Act for Fiscal Year 2010 lacked funding for further F-22 production. US is now giving more stress on completing the development and production of much cheaper and better F-35.

There has been reportedly 3 accidents of F-22, latest one was On 16 November 2010, where an F-22, based at Elmendorf, Alaska, lost contact with Air Traffic Control. The accident has been attributed to a malfunction in the bleed air system that shut down the aircraft’s Environmental Control System (ECS) and On-Board Oxygen Generating System (OBOGS).

On 11 January, 2011 Chinese had tested their own J-10 stealth fighter, leading to the speculation of the reactivation of F-22 production. As we have come so far, and US has had not so good hands on experience of having a stealth fighter in the force, it wouldn’t be fair to compare F-22 with PAK FA. The next comparison should be between F-35, PAK FA/HAL FGFA and Chinese J-10.

Related Comparison Articles on The World Reporter

  1. Eurofighter Typhoon V/S Dassault Rafale
  2. Chinese Aircraft Carrier Liaoning V/S Indian Aircraft Carrier INS Vikrant
  3. Pakistan’s JF 17 V/S India’s HAL Tejas (LCA)
Use your ← → (arrow) keys to browse

Sanskar Shrivastava is the founder of international students' journal, The World Reporter. Passionate about dynamic occurrence in geopolitics, Sanskar has been studying and analyzing geopolitcal events from early life. At present, Sanskar is a student at the Russian Centre of Science and Culture and will be moving to Duke University.

Continue Reading
Comments

War and Military

How Weaker Nations Are Taking Cyber Warfare Advantage

Alexandra Goman

Published

on

Cyber offensive technology (a malware that is employed for military use) gives clear asymmetric advantage which favours weaker states and non-state actors. They may pursue cyber technology in order to gain strength in pursuit of broader goal. This asymmetry is not something new and presents to be an effective tool to level the imbalance of power.

The entry for weaker actors is easier, cheaper, and it does not require much efforts. Presumably, one may need some computers and technical assistance. Offensive capability can also be procured through online criminal market, so that even high-skilled IT personnel may not be required.  Furthermore, attribution problem is not yet solved, so it gives an advantage in staying anonymous, therefore, escaping failure costs.

Asymmetric tactics is pursued by actors that do not have constraints on their own concept of morality and war-fighting. Terrorists or insurgents might not have the same reservations about killing civilians or bringing high level of destruction in the event of a cyberattack than state countries. Similarly, those desperate enough but with a strong will to fight, may employ cyber method regardless of high costs.

Terrorists, for example, target innocents indiscriminately. Their goal is to inflict the threat of terror and violence in order to achieve a strategic goal.  This consequently poses great challenges for deterrence. As weak actors are becoming stronger, others become more vulnerable.

Soldiers wrapped up day two of an integrated cyber exercise between 4th Battalion, 23rd Infantry, 14th Brigade Engineer Battalion, 201st Expeditionary Military Intelligence Brigade, from Joint Base Lewis-McChord, Wash., supported by cyber augmentees from the 780th Military Intelligence Brigade from Fort Meade, Md., Oct. 21. Cyber information collected during the exercise enabled the Soldiers to isolate and capture a simulated high-value target in a mock village. The training integrates infantry ground units with cyber, signal and human intelligence collection capabilities, which gives units on the modern battlefield a broader capacity to search out and isolate their enemies in real time. (Photo by Capt. Meredith Mathis)

Nevertheless, gaining cyber capability is not that easy as it may seem. The case of Stuxnet (a malware that attacked a nuclear facility in Iran) does not seem to prove asymmetric advantage, because the attack was apparently conducted by stronger parties with substantial funding and resources. Detailed intelligence on the target, access to the computer network of an opponent, finding vulnerabilities and then employment of cyber capability (all present in Stuxnet case) further complicate an argument about asymmetry. Moreover, the development of Stuxnet code required some high-skilled expertise that may be difficult and inaccessible by non-state actors or weak states.

Additionally, it would take time and financial support to plan, manage, and monitor the development of the code. Therefore, it would require more personnel than just IT specialists. Moreover, considering the target of Stuxnet, nuclear expertise would be required as well. Similarly, knowledgeable experts in other areas would also come in handy: there should be people skilled in how these infrastructures work to cause actual damage.  So in case of a lone hacker with radical views, the use of cyber appears to be doubtful, as there are cheaper and easier ways to inflict damage.

At the same time, there are risks of failure and they are too faced by weak actors. If such mission was compromised, and/or a code behaved differently than expected and/or backfired, it would only increase the costs without ringing actual benefits. In this sense, stronger states are more prepared to minimize them than weaker ones.

If a cyberattack fails to reach the end result, weaker actors may have spent substantial amount of money in vain and have not reached the desirable effect. This, in turn, reduces the probability of using cyber in the first place. Weak states may want to invest in other ventures, rather than cyber, to be sure that they can reach the desirable end result. So the true costs of such attack have a high level uncertainty for weak actors as well, however they may not be prepared to bear the failure costs and may not have enough resources to mitigate them.

Another advantage of cyber technology is that the nature of cyberspace and cyberattacks favour an attacker. Offense is becoming easier than defense and guarantees anonymity. The Internet was designed to make connections easy and reliable, plus security was not in the original thinking of creators. Thus, an attacker has an upper hand to reach its target, while staying anonymous and inflicting damage through cyber means.

Today cyber defense is not perfected and has vulnerabilities that can be exploited. Although it has been greatly improved for the last decade, vulnerabilities still remain, especially in the sector of industrial facilities that proved to be slow in adjusting to current cyber threats. For instance there is increased complexity of integrated information systems, hardware devices and component software produced which only increase cyber risks. Moreover, security considerations are left aside because of the demand to design measures in accordance to CIA requirements and other specifications.

Meanwhile, the percentage of industrial computers targeted by cyber perpetrators has grown for more than 7% between July and December 2016 (Kaspersky Lab ICS CERT, 2016). In the first half of 2017, Kaspersky Lab blocked 37.6% attempts on ICS computers. Fortunately, no dedicated malware that affected industrial processes were found (Kaspersky Lab ICS CERT, 2017). Moreover, the Internet remains the main source of infection for computers that are part of industrial infrastructure.

As for anonymity factor, attribution remains a technical problem up to date. In case of Stuxnet, it is believed that it was initiated by the Unites States of America and Israel which both were interested in impairing Iran’s nuclear program. According to Sanger, one of the journalists who intensively covered the topic of Stuxnet as a US cyber weapon[1], Stuxnet has been a part of a highly covert US operation, code-named “Olympic Games”, which had already begun under the Bush administration. In any case, attribution is still lacking and Stuxnet was not attributed, so it is hard to speculate about the particular parties involved.

Asymmetric threat does not seem to be supported by Stuxnet case as there were substantial resources and financial capabilities involved to plan this operation. However, the possibility of employing cyberattacks in the future by non-state actors and weaker states cannot be ruled out as one case study is not sufficient enough to generalize. In case of cyberattacks by non-states, the damage may be limited, but cyber could be still used to compliment other weapons.  In any case, this asymmetric threat does impede final deterrence on the world stage and should be taken in consideration in future security affairs.

After all, Stuxnet – the first use of offensive computer program – might have been an imperfect test-run of cyber means and more advanced are yet to come. One always fails before achieving success; this is what happened to pretty much any other weapon in history. More dangerous attacks may be mounted in the future, but for now these are all speculations.

[1] Sanger, D. (2012). Obama Ordered Wave of Cyberattacks Against Iran. The Ney York Times, [online] Available at: http://www.nytimes.com/2012/06/01/world/middleeast/obama-ordered-wave-of-cyberattacks-against-iran.html [Accessed on 17.02.2018].

Prev postNext post
Use your ← → (arrow) keys to browse

Continue Reading

War and Military

Food for Thought: A Cyber Pearl Harbour

Alexandra Goman

Published

on

cyber pearl harbor

To begin with, the notion that a state can be vulnerable to a strategic surprise attack is one of the main discourses in cyber debate. A former US Defense Secretary, Leon Panetta warned¹ of the Cyber Pearl Harbour in 2012, highlighting the dangers of cyberattacks on critical infrastructure. However, this term has appeared in the beginning of the 90s.

The Pearl Harbour analogy appeared to characterize a “bolt-from-the-blue” surprise attack and originated in America. Strategic surprise attacks can temporarily suspend an enemy, thus giving an advantage to the attacker to achieve its goal. It can also be employed by weaker actors to gain a strategic advantage.

Cyberattacks can be launched against critical infrastructures in order to stun and freeze the opponent. It can render an enemy unable to execute their normal operations, leaving them outnumbered and vulnerable to future offence. At the same time, a state can recover from this (depending on the capabilities), overcome the compromised systems and retaliate even with stronger force, preventing an attacker to reach the desirable result. Still, there are certain strategic and operational advantages.

The specifics of cyber Pearl Harbour cannot be known in advance, as something like this has not yet happened, however there are a lot of speculations in regards to the disastrous consequences. Such an attack, coupled with conventional military support, can give obvious benefits to the attacker.

At the same time, more powerful states (like United States of America, England, Japan) would be more vulnerable to such attacks, as they are heavily interconnected and reliant on the network connections. Nonetheless, they should be resilient and ready to mitigate the costs of the attack, yet it is not clear how much time they might need to recover from a massive incident that affects critical infrastructure.

As president Obama once said²,“It doesn’t take much to imagine the consequences of a successful cyberattack. In a future conflict, an adversary unable to match our military supremacy on the battlefield might seek to exploit our computer vulnerabilities here at home. Taking down vital banking systems could trigger a financial crisis. The lack of clean water or functioning hospitals could spark a public health emergency. And as we’ve seen in past blackouts, the loss of electricity can bring businesses, cities and entire regions to a standstill.”

That being said, today cyber defense is still not perfect and this Cyber Pearl Harbour scenario cannot be ruled out. Increased complexity of integrated information systems, hardware devices and component software comes with increased cyber risks. Although cyber defense has been greatly improved for the last decade, vulnerabilities still remain, especially in the sector of industrial facilities that proved to be slow in adjusting to current cyber threats.

BBC News. (2012). Leon Panetta warns of ‘cyber Pearl Harbour’. [online] Available at: http://www.bbc.com/news/av/technology-19923046/leon-panetta-warns-of-cyber-pearl-harbour [Accessed on 20.02.2018].

President Obama, B. (2012). Taking the Cyberattack Threat Seriously. The White House, [online] Available at: https://obamawhitehouse.archives.gov/blog/2012/07/23/taking-cyberattack-threat-seriously [Accessed on 20.02.2018].

Use your ← → (arrow) keys to browse

Continue Reading

Technology

Wars: From Weapons to Cyberattacks

Alexandra Goman

Published

on

Historically war focused on public contests which involve arms, e.g. Gentili’s concept of war. The main goal of such contests is to inflict damage to soldiers of an opposing side. Through this lens, cyberwar may be seen as a contest which perhaps involves certain arms. But it should be noted that these contests are very seldom public, mostly due to attribution problem. Even more, cyberattacks do not kill or wound soldiers; instead they aim to disrupt a property. It is, however, somewhat debatable, because such disruption of a system (like meddling with the nuclear facilities of Iran) may have an effect on both, civilians and combatants in a longer run. However, these secondary consequences are not the primary goal of a cyberattack, thus, there should be a difference between a cyberwar and a war.

The element of war being public is very important, as war is always openly declared. Additionally, an opposing side is given a chance to respond to the enemy by whatever means it deems necessary. In the context of cyberwar, this is more complicated. In case of cyberattacks, it is very difficult to determine the source and the initial attacker (more precisely, an attribution problem which is to be addressed further). Moreover, many attackers prefer to remain silent. This argument is further exacerbated by the lack of evidence. At this date the best example of cyber warfare, going somewhat public, is Stuxnet – not attributed to and officially admitted.

In the end, the attack became public but it was hidden for a year before its discovery. The specialists did notice the Iranian centrifuges malfunctioning[1] but they failed to identify the source of problems. This cyberattack was new because it did not hijack a computer or extort money; it was specifically designed to sabotage an industrial facility, uranium enrichment plant in Natanz.

However, attribution still falls behind. U.S and Israel are believed to launch Stuxnet, however they denied their involvement. Moreover, not any other country as officially admitted that. Based on the previous argument, for war to happen it has to be public. The case of Stuxnet or its similar computer programs does not therefore prove the case of cyberwar.

Moreover, if war is seen as a repeated series of contests and battles, pursued for a common cause and reason (for example, to change the behavior of the adversary), then there should be more attacks than just one. Nothing seems to preclude that one state may attempt launching a series of cyberattacks against an enemy in the future, which consequently be named a war. However, the adversary should be able to respond to the attacks.

Another view argues that the just war tradition[2] can accommodate cyberwar; however there are also some questions to take into consideration. In cyberwar, a cyber tool is just means which is used by military or the government to achieve a certain goal. This fits the just war tradition very well, because the just war tradition does not say much about means used in war. It is more focused on effects and intentions (See Stanford Encyclopedia of Philosophy Online).

The example of cyberweapons and the debate around them prove that they are discussed in the same way as any other evolving technology. If agents, effects, and intentions are identified, cyberwar should supposedly apply to the just war tradition similarly to any other types of war. However, cyber means has unique characteristics: ubiquity, uncontrollability of cyberspace and its growing importance in everyday life. These characteristics make cyberwar more dangerous, and therefore it increases the threat in relation to cyberwar.

Another useful concept of war to which cyber is being applied is the concept of war by the Prussian general Carl von Clausewitz. It presents the trinity of war: violence, instrumental role, and political nature (Clausewitz, 1832). Any offensive action which is considered as an act of war has to meet all three elements.

Firstly, any war is violent where the use of force compels the opponent to do the will of the attacker (Ibid., 1). It is lethal and has casualties. Secondly, an act of war has a goal which may be achieved in the end of the war (or failed to achieve in case the attacker is defeated). The end of war, in this sense, happens when the opponent surrenders or cannot sustain any more damage. The third element represents political character. As Clausewitz puts it, “war is a mere continuation of politics by other means” (Ibid., p. 29). A state has a will that it wants to enforce on another (or other) states through the use of force.  When applying this model to cyber, there are some complications.

Cyber activities may be effective without violence and do not need to be instrumental to work. According to Rid, even if they have any political motivation, they are likely to be interested in avoiding attribution for some period of time. That is why, he highlights, cybercrime has been thriving and was more successful that acts of war (Rid, 2012, p.16).  However, in all three aspects, the use of force is essential.

In the case of war, the damage is inflicted through the use of force. It may be a bomb, dropped on the city; or a drone-strike that destroys its target. In any case, the use of force is followed by casualties: buildings destroyed, or people killed. However, in cyberspace the situation is different. The actual use of force in cyberspace is a more complicated notion.

[1] International Atomic Energy Agency (2010). IAEA statement on Iranian Enrichment Announcement. [online] Available at: https://www.iaea.org/newscenter/pressreleases/iaea-statement-iranian-enrichment-announcement [Accessed on 28.12.2017].

[2] Jus bellum iustum (Lat.) – sometimes referred both as “just war tradition” and “just war theory”. Just war theory explains justifications for how and why wars are fought. The historical approach is concerned with historical rules or agreements applied to different wars (e.g. Hague convention). The theory deals with the military ethics and describes the forms that a war may take.  Ethics is divided into two groups: jus ad bellum (the right to go to war) and jus in bello (right conduct of war). (See Stanford Encyclopedia of Philosophy Online). In the text Cook applies cyberwar to the just war tradition, rather than theory. In his belief, “tradition” describes something which evolves as the product of culture (In Ohlin, Govern and Finkelstein, 2015, p. 16).

Use your ← → (arrow) keys to browse

Continue Reading

Trending