Connect with us
Waymo Self driving car

By Grendelkhan – Own work, CC BY-SA 4.0

Revolution isn’t a word to throw around lightly. It means forced change from below, and often at cost. The thing is, we’re on the cusp of a huge revolution and no, you won’t be hearing the people sing – it’s less Les Miserables and more WALL-E.

The self-driving revolution is underway and there’s no stopping it. There’s serious money – be it Elon Musk, Google or investment banking and venture capitalists behind each new development. The best minds in the world are working hard at making things a little easier for everyone. Electric cars will become the norm in France, Norway and The United Kingdom by 2040, and they are natural bedfellows for self-driving cars due to their architecture. The electronics inside are more compatible with self-driving operating systems and the computers that direct cars.

Google, as usual, are leading the way with Waymo – their project to make driving safer for everyone. The theory is, that if human error can be removed from driving, then less accidents will occur on the road. Now, the road won’t be accident free, but they could be less fatal – especially if you’ve got a car that could hit the brakes before a human driver even realizes that they need to!

It’s not just cars though. We’ll be in the air by 2025. Soon enough, you’ll find that aircraft propellers are being controlled by autopilot completely. Auto-pilot is nothing new, but had more in common with ‘cruise control’ than anything else. New developments mean that a fully maneuverable aircraft is just around the corner and within a decade, passenger flights could be without a human pilot. Now, people are worried about this – just like they are worried about self-driving cars. There’s not much to worry about – but to the layman, it will seem a leap of faith that is just not worth taking. However, flying has been the safest mode of travel for a long time – and removing human error from flying can only be a good thing, right?

There have been a number of issues with self-driving vehicles, namely accidents. It has been proven that self-driving vehicles can be hacked, so infrastructure needs to be improved. This means someone can remotely control a car or slam on the brakes. This is a huge worry. There is also an issue with trust. A recent incident with UBER proved that human drivers are not willing to yield control to robotics and an accident occurred in Arizona when a human driver refused to yield to the car, trying to override on a turn. It seems that our downright refusal to accept robotics is more likely to cause accidents than a robot itself.

The thing is, we don’t need to trust robotics, we need to trust in our own abilities to develop the tech needed to make the roads safer. It’s not robots driving cars, it’s the work of our greatest minds! It’s less a leap of faith, and more trust in our abilities to create the future, in the time of today.

Use your ← → (arrow) keys to browse

Student @ Advanced Digital Sciences Center, Singapore. Travelled to 30+ countries, passion for basketball.

Continue Reading
Comments

Technology

9 disruptive technologies that will bloom before 2019 ends

Published

on

Technology-in-2019

Since the beginning of time, each new technological invention has meant a change of paradigm for the way people work. However, in recent years the frequency of changes has accelerated to such an extent that companies have to renew themselves and their daily procedures almost every season. Usually they are small changes or mere adaptations, but sometimes an innovation appears that makes the previous mechanisms obsolete. This is what is known as disruptive technology.

2019 is a disruptive year as far as technology is concerned: the trend of innovation continues at an accelerated pace, deepening the technological revolution. Innovative industries keep evolving and they are overcoming barriers only imaginable in Isaac Asimov’s sci-fi novels or in TV series and films such as Black Mirror or Gattaca. Check the technological trends that are making a disruptive change in the digital transformation.

1. 5G mobile networks

Some companies have started to launch pilot experiments of this kind of technology. 5G prepares the ground for navigating at speeds of up to 10 gigabytes per second from mobile devices.

2. Artificial intelligence (AI)

This will be the year of its definitive take-off. Included in the political agendas, the European Commission has made it one of the mandates for member states to develop a strategy on this matter by the middle of the year.

3. Autonomous devices

Robots, drones and autonomous mobility systems are some of the innovations related to AI. They all aim to automate functions that were previously performed by people. This trend goes beyond mere automation through rigid programming models, as it explores AI to develop advanced behaviors that interact more naturally with the environment and users.

4. ‘Blockchain’.

Finally, this technology it is no longer associated only to the crypto coins world, and experts are starting to notice its likely application in other fields. In congresses such as the annual IoT World Congress by Digitalizing Industries, -coming in october 2019-, we will witness the actual implementation of many projects based on ‘blockchain’, which will try to solve the challenges still faced by technology in different fields such as banking and insurance. It will also be a decisive year for the deployment of ‘decentralised organisations’ operating around smart contracts.

5. Advanced analytics

‘Big data’, is taking a step further with this trend, which combines this technology with artificial intelligence. Automatic learning techniques will transform the way data analysis is developed, shared and consumed. It is estimated that the capabilities of advances analytics will soon be widely adopted not only to work with information, but also to implement them in business applications of the departments of Human Resources, Finance, Sales, Marketing or Customer Service, in order to optimize decisions through a deep analysis of data.

6. Digital twins

Digital Twins are one of the disruptive technologies that will have more impact on the simulation and analysis of industrial processes. A digital twin is the virtual representation of a real-world entity or system capable to maximize the benefits of the digital transformation of companies. Many companies and organizations are already implementing these representations and will develop them over time, improving their ability to collect and visualize the right data, apply improvements to it, and respond effectively to business objectives.

7. Enhanced Edge Computing

Edge computing is a trend mostly applied to the Internet of Things. It consists of the location of intermediate points between connected objects in order to process information and perform other tasks in places closer to the reception of content by the user, in order to reduce traffic and latency in responses. This is a way to keep processing near the endpoint rather than on a centralized cloud server. However, instead of creating a new architecture, cloud computing and perimeter computing will evolve as models complementary to cloud services, managed as a centralized service that runs not only on centralized servers, but on local distributed servers and on the perimeter devices themselves.

8. Immersive experiences in intelligent spaces

Chatbots integrated into different conversation platforms and voice assistants are transforming the way people interact with the digital world, as are virtual reality (VR), augmented reality (AR) and mixed reality (MR). The combination of these technologies will lead to a profound change in the perception of everything that surrounds us through the creation of intelligent spaces where more immersive, interactive and automated experiences can be lived for a specific group of people or for specific scenarios in an industry.

9. Digital ethics and privacy

Digital ethics and privacy are issues of increasing interest to individuals, organizations and governments. It is no coincidence that people are increasingly concerned about how their personal information is being used by public and private sector entities, so in the coming months companies will be proactively addressing these concerns and to gain the trust of users.


Prev postNext post
Use your ← → (arrow) keys to browse

Continue Reading

Technology

You haven’t virtualized yet – why you should do so as soon as possible

Published

on

keyboard laptop virtualization

Virtualization is not a new thing, it has been around for some time now, and is one of the key ways a business can protect their IT infrastructure and reduce costs.

Opting for cloud vdi (virtual desktop infrastructure), is absolutely the way forward for businesses, but there could be many reasons why you haven’t been able to make the change yet.

Maybe you have not had a good enough network to support externally hosted desktops and applications, or you are a smaller business that is only just beginning to think of moving to a virtual enterprise structure. It could also be that you are suffering from the hangover of an older infrastructure with your own onsite servers and just coming to the end of the asset life time. Either way your next move should be to look at virtualization and here is why.

The savings can be substantial

Without a doubt the biggest reason is the cost savings you will make. Any company or business needs to be fully aware of the bottomline, and while the project to virtualize will need a little investment, long term it will save your business a lot more.

For example, you will no longer need onsite servers. Hardware is expensive to replace, and in order to keep up with technological investment they need to be replaced every few years. They also need to be upgrades, require server engineers to manage them, a specialised location to store them with adequate cooling and they use a lot of electricity. And this is before you even begin to think about the licences for the operating systems and applications.

Increased reliability and security

With security becoming so much more important, especially if you are holding any personal data, you need to be sure that you have adequate security measures in place to protect your IT services. Through application virtualization a data centre via the cloud, you can make sure that those provisions meet exactly what you need.

You can also increase the uptime and availability for your users, through better mirroring and failover provisions. Data centres are geared towards maximum uptime, and even should something go wrong with a server, users will like never even know as the services move over to alternative servers. To create and host this type of infrastructure yourself will require a whole IT department!

Increased productivity for your workforce

By moving to desktop virtualization your employees will be able to access their documentation and applications from almost any device. From mobile devices, tablets, laptops they will be able to do whatever they need, whenever and wherever they need it. For companies operating internationally or with a lot of travel involved this is absolutely vital.

It can also set the scene for flexible working – already proved to make the workforce much more productive. It also means that should a device breakdown, it is simple enough to switch to another.

Management of company devices is also a lot simpler, with setup and deployment happening remotely. All your installations, updates and patches, back ups and virus scans can be controlled centrally. It also means much better management of software assets.

In addition your service provider should be able to provide a whole range of support for your IT teams, with access to many disciplines and expertise to keep you running at your maximum 24 hours a day if needed.

Desktop virtualisation is definitely the way forward for any business. It makes end user environments much more secure. Reliability and uptime is better, which also keeps those end users happy and productive in their own work. No more lost working hours due to broken servers. Approached strategically, this can revolutionise your business and its operations well into the future.

Use your ← → (arrow) keys to browse

Continue Reading

Technology

Concerns and Limitation of Cyber Warfare

Alexandra Goman

Published

on

cyberwarfare stuxnet

The discovery of Stuxnet, a malware that targeted a nuclear facility, was somewhat revolutionary and groundbreaking. It targeted ICS which monitor and run industrial facilities. Before that, most of malicious programs were developed to steal information or break-in into financial sector to extort money. Stuxnet went beyond went and targeted high-level facilities. It is not hard to imagine what damage it could have inflicted if the worm were not detected. What is more worrisome, the technology is out. It might not be perfect, but it is definitely a start. Regardless of the intentions behind Stuxnet, a cyber bomb has exploded and everyone knows that cyber capabilities indeed can be developed and mastered.

Therefore, if they can be developed, they will probably be. The final goal of Stuxnet was to affect the physical equipment which was run by specific ICS. It was done in order to manipulate computer programs and make it act as an attacker intended it to act. Such a cyberattack had a particular motivation; sabotage of industrial equipment and destruction could have been one of the goals. So, if they were indeed the goals, it might have been an offensive act, conducted by an interested party, presumably, a state for its political objective. Yet, there are certain limitations when it comes to so-called “cyber weapons” (malware that might be employed for military use or intelligence gathering). 

One of the main concerns of cyber offence is that code may spread uncontrollably to other systems. In terms of another physical weapon, it is like a ballistic missile that anytime can go off-course and inflict damage on unintended targets and/or kill civilians. Cyber offensive technology lacks precision, which is so valued in military. For example, in ICS and SCADA systems one may never know what can backfire because of the complexity of the system.  The lack of precision consequently affects military decisions. When launching a weapon, officers should know its precise capabilities; otherwise, it is too risky and is not worth it. 

In case of Stuxnet, the program started replicating itself and infected computers of many countries. For this moment we do not know if it were planned in that way.  However, provided that that target was Natanz facility, it is unlikely. Symantec Corporation started analyzing the case only with external help; it did not come from Natanz. This exacerbates the case if a country decides to launch an offensive cyberattack.

If the military planning cannot prevent cyber technology to go awry or to go out in the public, it brings more disadvantages than advantages.  Moreover, given a possibility of the code being discovered and broke down to pieces to understand what it does, it may potentially benefit an opposing party (and any other interested party along the way). This is unacceptable in military affairs.

Similarly, when the code is launched and it reaches the target, it can be discovered by an opponent. In comparison to nuclear, when a bomb explodes, it brings damage and destruction, but its technology remains in secret. In case of cyber, it may not be the case, as when a malware/virus is discovered, it can be reverse engineered to patch vulnerability. By studying the code, an enemy would find out the technology/tactics used that could be unfavourable in the long-run for the attacker.

Additionally, it should be said that not every malware is meant to spread by itself. In order to control the spread, vulnerability can be patched, meaning updating the software which had that vulnerability. An anti-malware can also be introduced; this will make the computer system immune to that particular vulnerability. Nonetheless, if the malware spreads uncontrollably, there is nothing much that an attacker can do. It is not possible to seize the attack. In this scenario, an attack may only release information about this certain vulnerability so that someone else can fix it. However, a state is highly unlikely to do so, especially if the damage is extensive. It would not only cost the state diplomatic consequences, but also it might severely impact its reputation.

An AI-enabled cyberattack could perhaps fulfill its potential. That means involvement of artificial intelligence. AI systems could make digital programs more precise, controlling the spread. In contrast, it could also lead to a greater collateral damage, if a system decides to target other facilities that may result in human death. Similar concerns are raised in the area of autonomous weapon systems in regard to the need of leaving decision-making to humans and not to technology. AI technology has a potential to make existing cyberattacks more effective and more efficient (Schaerf, 2018).

Aforementioned concern leads to another and affects the end result. When a certain weapon is employed, it is believed to achieve a certain goal, e.g. to destroy a building. With cyber capabilities, there is no such certainty. In the case of Stuxnet, the malware clearly failed to achieve its end goal, which is to disrupt the activities of the industrial facility.

Alternatively, the true costs of cyberattacks may be uncertain and hard to calculate. If that is so, an attacker faces high level of uncertainty, which may also prevent them from a malicious act (particularly, if nation states are involved). However, the costs and the benefits may always be miscalculated, and an attacker hoping for a better gain may lose much more in the end (e.g. consider Pearl Harbour).

Another concern refers to the code becoming available to the public. If it happens, it can be copied, re-used and/or improved. Similar concerns in regards to proliferation and further collateral damage emerged when Stuxnet code became available online.  An attacker may launch a cyberattack, and if it is discovered, another hacker can reverse engineer the code and use it against another object. Moreover, the code can be copied, improved and specialized to meet the needs of another party. Technology is becoming more complex, and by discovering a malware developed by others, it also takes less time to produce a similar program and/or develop something stronger. (For instance, after Stuxnet, more advanced malwares were discovered – Duqu and Flame).

Furthermore, there are other difficulties with the employment of cyber offensive technology. In order to maximize its result, it should be supported by intelligence. In case of Stuxnet, an offender needed to pinpoint the location of the facility and the potential equipment involved. It has to find zero-days vulnerabilities that are extremely rare and hard to find[1]. Cyber vulnerability is all about data integrity. It should be reliable and accurate. Its security is essential in order to run an industrial infrastructure.

After pinpointing vulnerability, security specialists need to write a specific code, which is capable of bridging through an air-gapped system. In case of Stuxnet, all of abovementioned operations required a certain level of intelligence support and financial capability. These complex tasks involved into development were exactly the reason why Stuxnet was thought to be sponsored and/or initiated by a nation state. If intelligence is lacking, it may not bring a desirable effect. Moreover, if cyber offense is thought to be used in retaliation, malicious programs should be ready to use (as on “high-alert”) in the event of necessity.

Regardless of some advantages of cyber offence (like low costs, anonymity etc), this technology appears to be unlikely for a separate use by military. There is a high level of uncertainty and this stops the army of using technology in offence. Truth is when you have other highly precise weapons, it does not make sense to settle for some unreliable technology that may or may not bring you a wanted result. Yet, other types of cyberattacks like DDoS attacks can give some clear advantages during military operations and give an attacker some good cards in case of a conflict. When such attacks used together with military ground operations, they are much more likely to bring a desired result.


[1] For better understanding, out of twelve million pieces of malware that computer security companies find each year, less than a dozen uses a zero-day exploit.

Use your ← → (arrow) keys to browse

Continue Reading

Trending